

# ВВЭР-СКД – будущее легководных энергетических реакторов

Научно-техническая молодёжная конференция

«Будущее – атомная энергетика»

Пустовалов Станислав Борисович – начальник отдела, к.т.н., ответственный исполнитель работ по направлению ВВЭР-СКД

### Общие сведения



В рамках Подпрограммы НИОКР ГК «Росатом» на 2019-2028гг. «Разработка технологий корпусных энергетических реакторов с легководным теплоносителем закритических параметров» должен быть выполнен первый этап разработки энергетического реактора нового поколения, обладающего следующими характеристиками:

- Работа в ЗЯТЦ с коэффициентом воспроизводства (KB), не менее 1,0
- Эффективный КПД ЯЭУ, не менее 0,4
- Радиационная безопасность машзала не ниже требований Поколения 3+
- Удельная стоимость не ниже требований Международного форума «Поколение 4»
- Срок сооружения не ниже требований Международного форума «Поколение 4»
- Срок службы не ниже требований Поколения 3+

### Система АЭ на базе ВВЭР

### пессимистичный сценарий

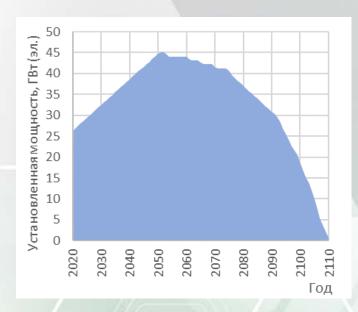



Рис. 1. Установленные мощности АЭ на базе ВВЭР, ГВт(эл.) (пессимистичный сценарий)



Рис. 2. Потребности реакторов ВВЭР в природном уране, тыс. т/год: — интегральное потребление; — ежегодное потребление (пессимистичный сценарий)

По состоянию на 1 января 2020 г. запасы и ресурсы урана в России оценивались в 513 тыс. т. [1].

В пессимистичном сценарии предполагается, что до 2022 г. ввод мощностей совпадает с фактическим, а затем до 2050 г. мощности вводятся с максимально возможным темпом так, чтобы все вводимые реакторы были обеспечены топливом на весь срок службы.

В этом случае установленная мощность системы АЭ составит 45 ГВт(эл.) к 2050 г.

После 2050 г. новые реакторы ВВЭР не вводятся, а уже введённые дорабатывают свой срок эксплуатации и к 2110 г. прекращают свою работу полностью (рис. 1), так при таком сценарии весь доступный ресурс природного урана будет исчерпан (рис. 2).

АРМЗ/Росатом

год.

## Система АЭ на базе ВВЭР-СКД

# национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

### эволюционный сценарий



Рис. 3. Изменение структуры установленных мощностей ЯЭУ на базе легководных реакторов, ГВт (эл.): ■ — ВВЭР (UOX); ■ — ВВЭР-СКД (эволюционный сценарий)

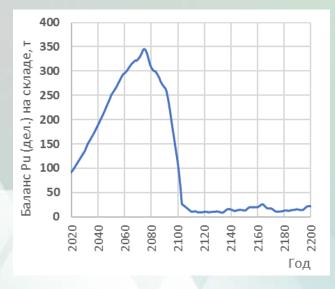
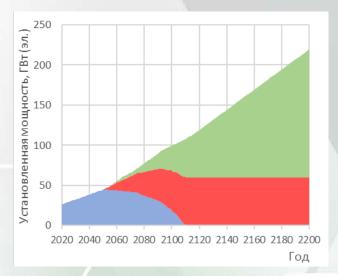



Рис. 4. Баланс делящихся изотопов плутония на складе, т (эволюционный сценарий)

Масштаб АЭ при реализации эволюционного сценария (см. рис. 3) не превысит 45 ГВт(эл.), так как при бо́льшем масштабе АЭ в ОЯТ ВВЭР производится недостаточно плутония для поддержания мощности системы АЭ (рис. 4).


На рис. 4 также видно, что объём плутония на складе, извлекаемого из ОЯТ ВВЭР, сокращается в моменты ввода новых ВВЭР-СКД, так как плутоний используется для формирования стартовых загрузок этих реакторов. При полном замещении ВВЭР реакторами ВВЭР-СКД система АЭ выходит на самообеспечение делящимися нуклидами, при этом на складе практически отсутствует плутоний, так как коэффициент наработки (КН), определяемый как отношение масс выгружаемых и загружаемых делящихся нуклидов, в ВВЭР-СКД находится на уровне 1,01—1,04.

Таким образом, при поэтапном внедрении ВВЭР-СКД до уровня АЭ мощностью около 40—45 ГВт(эл.) данный вид реакторов будет топливообеспечен на длительное время при условии, что весь плутоний из ОЯТ ВВЭР будет доступен и использован при производстве твэлов ВВЭР-СКД на заводах по переработке ОЯТ.

# Система АЭ на базе ВВЭР-СКД и Супер БР



### инновационный сценарий



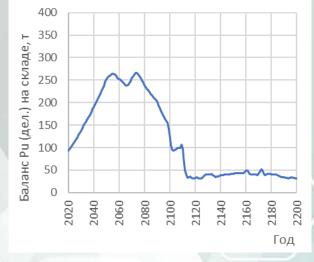
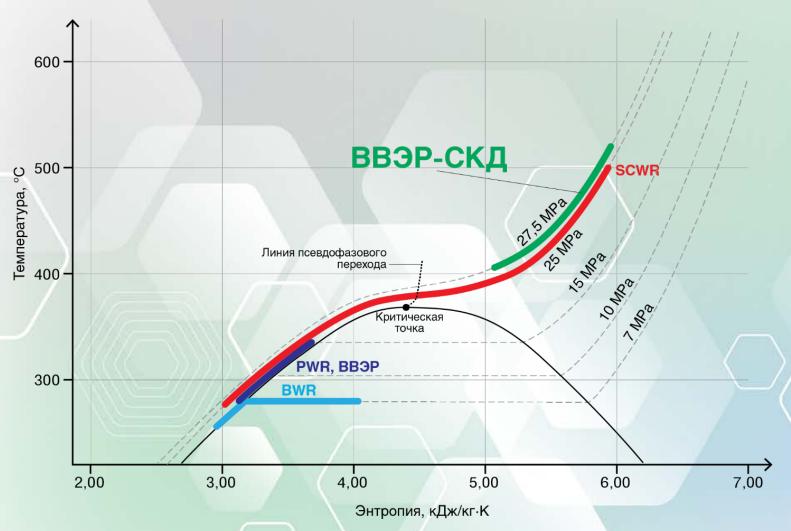



Рис. 5. Развитие системы АЭ на базе ВВЭР, ВВЭР-СКД Рис. 6. Баланс делящихся изотопов на складе, и Супер БР: ■ — ВВЭР-ТОИ (UOX); ■ — Супер БР; ВВЭР-СКД (инновационный сценарий)

(инновационный сценарий)


Для увеличения масштаба АЭ до 100 ГВт(эл.) и более необходимо введение в структуру АЭ, наряду с ВВЭР-СКД, перспективных реакторовбридеров (далее — Супер БР) с избыточной наработкой нечётных изотопов плутония на уровне не менее 300 кг дел. Ри/год/ГВт(эл.) при стартовой загрузке по 239Ри и 241Ри не более 2—2,5 т/ГВт(эл.) и длительности внешнего ЯТЦ не более 3 лет.

Таким образом, можно сформулировать следующие ключевые системные требования к реакторам в системе АЭ, при которых её мощность может быть повышена до уровня 100 ГВт(эл.) и более с обеспечением воспроизводимой топливной базы на длительную перспективу:

- для энергетических реакторов ВВЭР-СКД: обеспечение КН ≥ 1,01—1,04 и мощности ЯЭУ на уровне 300—600 МВт(эл.) с возможностью маневрирования в диапазоне 100—75—100%;
- для реакторов-бридеров Супер-БР: обеспечение высокой удельной избыточной наработки нечётных изотопов плутония, пониженная удельная стартовая загрузка плутония и короткий внешний ЯТЦ.

### Параметры теплоносителя





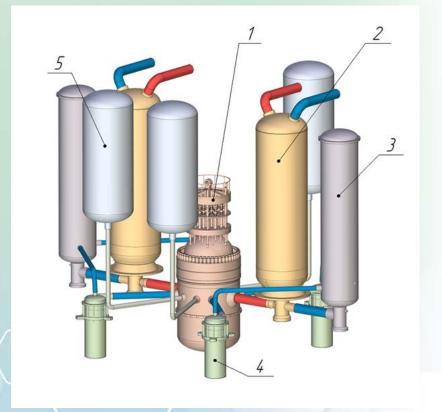
Параметры теплоносителя ВВЭР-СКД соответствуют области *псевдопара*, что позволяет наряду с тесной решеткой и уран-плутониевым топливом, обеспечить быстрый спектр нейтронов в активной зоне и высокий коэффициент воспроизводства делящихся нуклидов.

Отсутствие псевдофазового перехода теплоносителя в активной зоне и парогенераторе позволяет повысить нейтронно-теплогидравлическую устойчивость контура РУ.

Двухконтурная схема ЯЭУ позволяет обеспечить радиационную безопасность машзала на уровне Поколения 3+

# Энергетический реактор ВВЭР-СКД



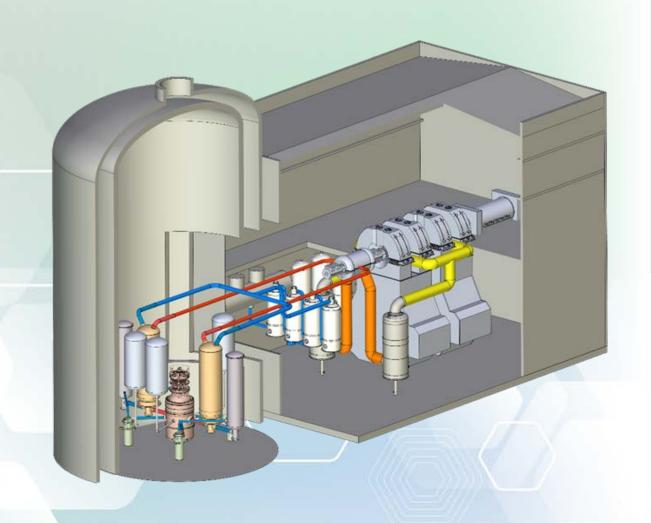

| Основные характеристики                                             |                          |  |  |
|---------------------------------------------------------------------|--------------------------|--|--|
| Срок службы, лет                                                    | 60                       |  |  |
| Тепловая мощность реактора, МВт                                     | 1250                     |  |  |
| Коэффициент воспроизводства                                         | не менее 1,0             |  |  |
| Топливный цикл                                                      | уран-плутониевый<br>ЗЯТЦ |  |  |
| Рабочее давление теплоносителя, МПа                                 | 27,5                     |  |  |
| Плотность теплоносителя в реакторе, вход/выход, кг/м3               | 207/85                   |  |  |
| Температура теплоносителя в реакторе, вход / выход, °C              | 405/520                  |  |  |
| Среднее объемное энерговыделение в активной зоне, кВт/л             | 250                      |  |  |
| Средняя/максимальная линейная нагрузка твэла в активной зоне, кВт/м | 210/350                  |  |  |



# Реакторная установка ВВЭР-СКД

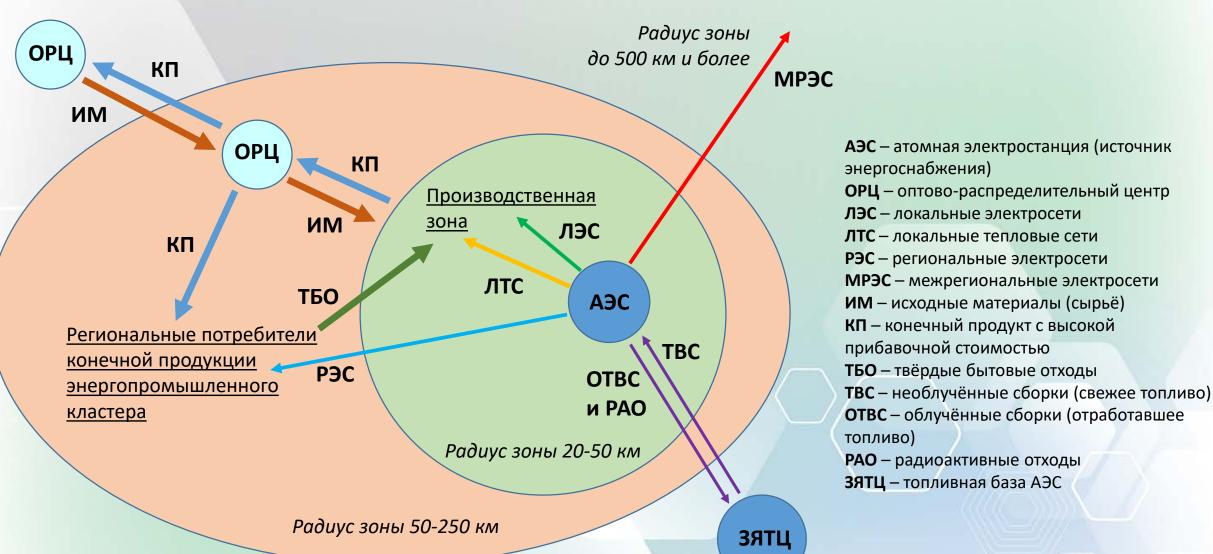


| Основные характеристики                                          |                          |
|------------------------------------------------------------------|--------------------------|
| Срок службы, лет                                                 | 60                       |
| Тепловая мощность РУ, МВт                                        | 1250                     |
| Количество петель                                                | 2                        |
| Количество ГЦА на петлю                                          | 2                        |
| Теплоноситель                                                    | легководный<br>псевдопар |
| Тип циркуляции теплоносителя                                     | принудительная           |
| Номинальный расход теплоносителя через реактор, кг/с             | 1740                     |
| Температура теплоносителя на входе/выходе парогенератора, °C     | 520/405                  |
| Давление рабочего тела ПТУ, МПа                                  | 27,5                     |
| Температура рабочего тела ПТУ на входе/выходе парогенератора, °C | 320/500                  |




- 1- реактор; 2- парогенератор;
- 3- буферная ёмкость;
- 4- циркулятор; 5- ёмкость САОЗ

# Энергоблок АС с РУ ВВЭР-СКД




| Основные характеристики                                        |                |
|----------------------------------------------------------------|----------------|
| Установленная электрическая мощность, МВт                      | 580            |
| Эффективность системы преобразования энергии (брутто/нетто), % | 46,4/42,1      |
| Эффективность ЯЭУ, %                                           | 40,5           |
| Схема реакторной установки                                     | двухпетлевая   |
| Схема паротурбинной установки                                  | 1 ЦВСД + 2 ЦНД |
| Удельная стоимость, \$/кВт(э)                                  | 4000–4500      |
| Срок сооружения, лет                                           | 4–4,5          |



### Концепция энергопромышленного кластера





### Атомная теплофикация на базе РУ ВВЭР-1200



| Параметр                                                 | АЭС-ТФУ         | АТЭЦ             | АЭС-ТНС         |
|----------------------------------------------------------|-----------------|------------------|-----------------|
| Мощность реактора, МВт(т)                                | 3200            | 3200             | 3200            |
| Установленная электрическая мощность, МВт(э)             | 1198,7          | 1130             | 1198,7          |
| Способ нагрева сетевой воды                              | паротурбинный   | паротурбинный    | теплонасосный   |
| Тип турбины                                              | конденсационная | теплофикационная | конденсационная |
| Теплофикационная мощность, МВт(т)                        | 300*            | 1000**           | 2500***         |
| Затраты мощности при<br>теплофикации, МВт(э)             | 91              | 160              | 556             |
| Удельные потери мощности при теплофикации, МВт(т)/МВт(э) | 3,3             | 4,34****         | 4,5             |

<sup>\*</sup>Нерегулируемые отборы работоспособного пара из ЦНД ~100 MBm(m) и ЦВД~ 200 MBm(m)

<sup>\*\*</sup>Регулируемые отборы работоспособного пара из ЦНД~1000 MBm(m)

<sup>\*\*\*</sup>Нагрев сетевой воды в тепловом насосе на диоксиде углерода с электрическим приводом компрессора, утилизирующем сбросную теплоту энергоблока АЭС с РУ ВВЭР-1200

<sup>\*\*\*\*</sup>С учётом снижения установленной электрической мощности энергоблока АЭС с теплофикационной турбиной





| Параметр                                               | Помидоры | Огурцы | Салат | Микро-<br>водоросли |
|--------------------------------------------------------|----------|--------|-------|---------------------|
| Занимаемая площадь, га                                 | 120      | 120    | 120   | 40                  |
| Годовая урожайность, кг/м2                             | 80       | 150    | 150   | 3,25<br>(сухой вес) |
| Годовой сбор, тыс. тонн                                | 96       | 180    | 180   | 1,3<br>(сухой вес)  |
| Среднегодовая цена реализации продукции, руб./кг       | 110      | 150    | 500   | 2000                |
| Годовая выручка, млрд. руб.                            | 10,56    | 27     | 90    | 2,6                 |
| Суммарная годовая выручка, млрд. руб. (цены 2023 года) | 130,16   |        |       |                     |

<sup>\*</sup>Теплофикационная мощность двухблочной АС с РУ ВВЭР-СКД на базе технологии АЭС-ТНС составит около 1,2 ГВт(т)

# Дорожная карта направления ВВЭР-СКД



### МТИР-СКД

#### Проект ЕОТП-МТ-234

Разработка программы реакторных облучений, ДРИ и ПРИ образцов оболочечных КМ и опытных твэлов. Моделирование ОУ и АУ-СКД с опытными твэлами

### Подпрограмма НИОКР на 2023-2033 годы в обоснование проектирования МТИР-СКД

Реализация проектов ЕОТП ГК «Росатом»: «Разработка технологий МТИР-СКД», «СКД-твэл», «СКД-теплотехника» и «СКД-нейтроника». Валидация расчетных кодов ЯЭУ МТИР-СКД. Обоснованные нормативные документы для проектирования многофункционального исследовательского комплекса на базе МТИР-СКД. Рекомендации по проектированию МТИР-СКД.

#### Проектирование, сооружение и ввод в эксплуатацию МТИР-СКД

Проектирование многофункционального исследовательского комплекса на базе МТИР-СКД

Подготовка площадки, сооружение зданий, монтаж и пуско-наладка оборудования. Ввод МТИР-СКД в опытную эксплуатацию.

#### Тестовая стадия эксплуатации МТИР-СКД

Отработка технологии ВХР на МКУ, достижение проектных значений коэффициентов реактивности, требуемых запасов реактивности на ОР СУЗ. Поэтапное освоение мощности МТИР-СКД.

#### Исследовательская стадия эксплуатации МТИР-СКД

Реакторные облучения перспективных ТВС, оболочечных ККМ в составе ОТ и ГНО в среде легководного СКД-теплоносителя.

Теплотехнические испытания масштабных моделей перспективных теплообменных аппаратов ЯЭУ ВВЭР-СКД.

Разработка и согласование мероприятий по выводу МТИР-СКД из эксплуатации.

Вывод МТИР-СКД из эксплуатации.

### ВВЭР-СКД

#### Подпрограмма НИОКР на 2019-2028 годы по технологиям ВВЭР-СКД

Разработка концепции, конструкторской, технологической и проектной документации нереакторной петли ВВЭР-СКД

Проведение исследований нереакторной петли ВВЭР-СКД и обобщение результатов. Выбор базового варианта ЯЭУ ВВЭР-СКД.

### Подпрограмма НИОКР на 2029-2040 годы в поддержку развития технологий ВВЭР-СКД

Валидация расчетных кодов ВВЭР-СКД. Обоснованные нормативные документы для проектирования пилотного энергоблока АС с РУ ВВЭР-СКД.

Рекомендации по проектированию реактора, РУ и ЯЭУ ВВЭР-СКД.

Разработка концепции перспективной РУ ВВЭР-СКД с высокотемпературным теплоносителем.

Разработка концепции перспективной высокоманевренной ЯЭУ ВВЭР-СКД.

#### Проектирование, сооружение и ввод в эксплуатацию пилотного ЭБ

Проектирование пилотного энергоблока АС с РУ ВВЭР-СКД

Подготовка площадки, сооружение зданий, монтаж и пуско-наладка оборудования. Ввод пилотного энергоблока с РУ ВВЭР-СКД в опытно-промышленную эксплуатацию.

### Эксплуатация пилотного энергоблока с последующим сооружением серии энергоблоков АС с РУ ВВЭР-СКД

Проектирование, сооружение и ввод в эксплуатацию второго энергоблока АС с РУ ВВЭР-СКД

Проектирование, сооружение серии энергоблоков АС с РУ ВВЭР-СКД в России и за рубежом

2043

2019

2023

2029

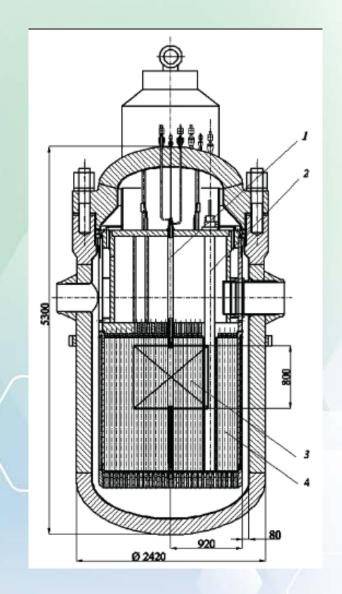
2033

2036

2040

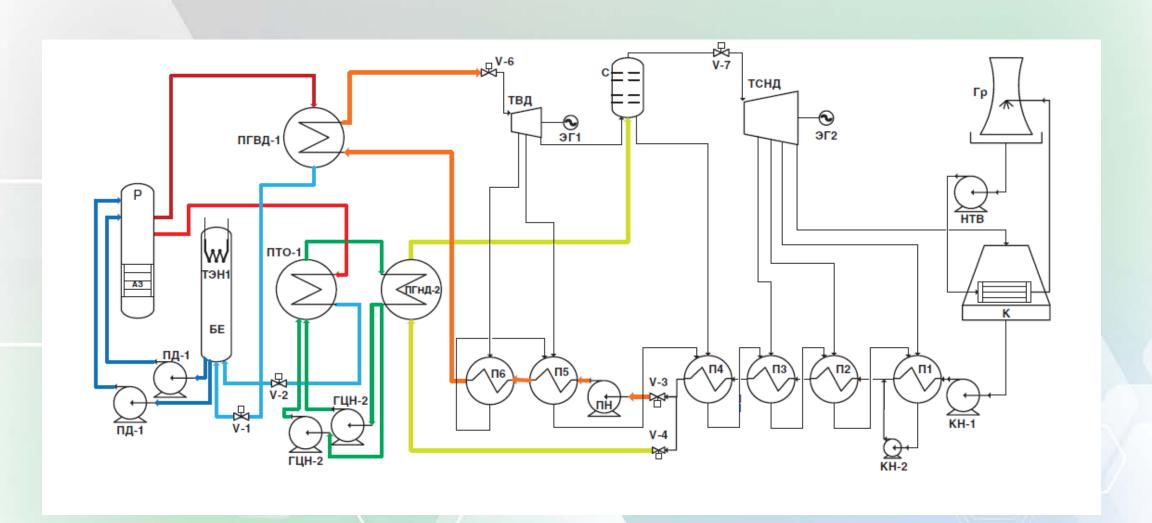
2045

2050


2070

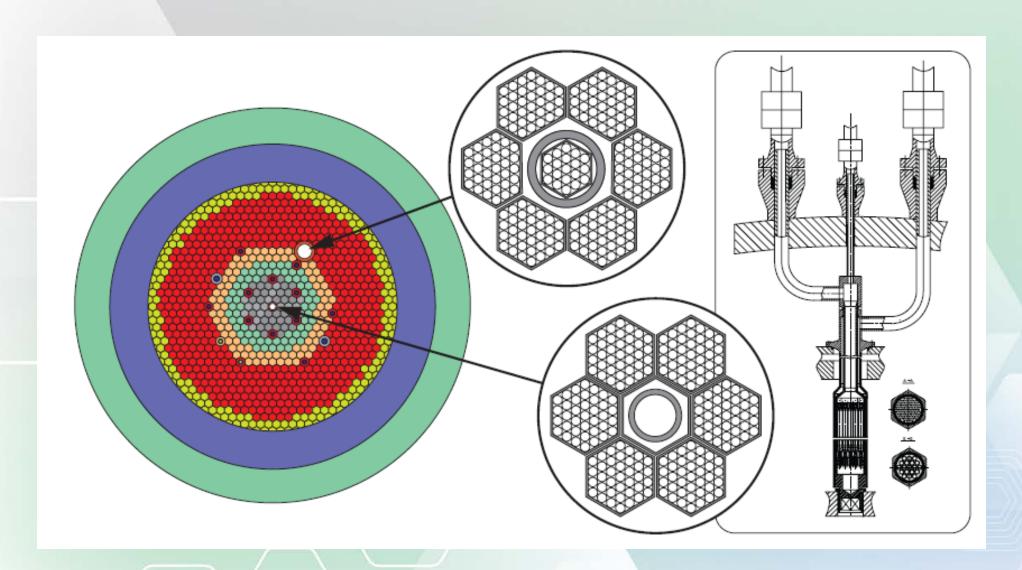
# Многоцелевой реактор МТИР-СКД




| Основные характеристики МТИР-СКД                        |           |
|---------------------------------------------------------|-----------|
| Проектный ресурс, лет                                   | 30        |
| Тип топлива                                             | UO2, MOKC |
| Количество автономных петель, шт.                       | 2         |
| Рабочее давление теплоносителя, МПа                     | 28,0      |
| Температура теплоносителя в реакторе, вход / выход, °С  | 410/457   |
| Среднее объемное энерговыделение в активной зоне, кВт/л | 210       |

- 1- центральное облучательное устройство;
- 2- периферийное облучательное устройство;
- 3- активная зона; 4- боковая зона воспроизводства




# Тестовый реактор МТИР-СКД





# Исследовательский реактор МТИР-СКД





### Заключение



- реализация направления ВВЭР-СКД является инновационным этапом развития легководного направления энергетических реакторов и системы АЭ в целом;
- ВВЭР-СКД с КН ≥ 1,01—1,04 позволяют в течение длительного периода времени поддерживать мощность АЭ на уровне до 45 ГВт(эл.) за счёт использования нейтронного потенциала легководных реакторов;
- ВВЭР-СКД позволяют обеспечить мощность АЭ до 100 ГВт(эл.) и более и поддерживать её в течение длительного периода времени при совместной работе в системе АЭ с реакторами-бридерами, обеспечивающими высокий темп избыточной наработки нечётных изотопов плутония в замкнутом ядерном топливном цикле (ЗЯТЦ);
- энергоблоки АС с РУ ВВЭР-СКД обладают высокими технико-экономическими показателями и базируются на апробированной технологии легководных энергетических реакторов и отечественном энергомашиностроении;
- построение энергопромышленных кластеров на базе АС с РУ ВВЭР-СКД позволит существенно повысить эффективность использования энергоресурсов, производимых атомным энергоисточником;
- агробиокомплексы закрытого грунта, наряду с промышленными предприятиями в районе размещения АС, являются перспективными платёжеспособными потребителями энергоресурсов от АС;
- для обоснования основ проектирования ВВЭР-СКД необходимо создание и отработка МТИР-СКД, в рамках комплексной программы по направлению ВВЭР-СКД на 2023-2028гг. и на период до 2040 года.



# Спасибо за внимание!

### Пустовалов Станислав Борисович

Электронная почта: Pustovalov\_SB@nrcki.ru

Телефон: +7 (499) 196 7016

