

Опыт использования системы предиктивной аналитики на Нововоронежской **АЭС**

Научно-техническая молодёжная конференция «Будущее атомной энергетики»

Воронов Алексей Викторович Инженер 2 категории ОТД НВАЭС

Что такое предиктивная аналитика?

Предиктивная аналитика

(предикативная, предсказательная, прогнозная аналитика, от англ. **predictive analytics**) — класс методов анализа данных, прогнозирующих поведение объекта.

Предиктивная аналитика

Массив данных большого объема (Big Data)

Методы и алгоритмы анализа данных (DataMining)

Система предиктивной аналитики (СПА)

СПА предназначена для предиктивного анализа данных, характеризующих состояние технологического оборудования АЭС, с целью обнаружения неисправностей и отказов оборудования на ранней стадии их развития.

Предиктивный анализ

Документация на оборудование (эксплуатационная, проектная,

Опыт эксплуатации оборудования (исторические архивы изменения значений конструкторская) параметров оборудования в условиях нормальной эксплуатации)

Информация об объеме проведенного ТОиР и зафиксированных нарушений в работе оборудования

Актуальные значения параметров оборудования (давления, температуры, расходы и т.д.)

Предиктивная модель оборудования (его узла, его функции)

«Индекс здоровья оборудования»

Дополнительная информация, характеризующая причины его отклонения от нормы

Основание для реализации пилотного проекта

- Приказ АО «Концерн Росэнергоатом» от 29.12.2018 № 9/1969-П «Об утверждении и введении в действие Программы цифровизации дивизиона «Электроэнергетический» на период 2018-2022 гг.».
- Приказ АО «Концерн Росэнергоатом» от 15.02.2019 № 9/224-П по теме «Об открытии проекта «Предиктивная аналитика оборудования АЭС в части анализа состояния основного электротехнического и тепломеханического оборудования».
- Приказ АО «Концерн Росэнергоатом» от 12.12.2022 № 9/01/2095-П по теме «О вводе в промышленную эксплуатацию системы предиктивной аналитики состояния оборудования АЭС».

Цель пилотного проекта: - создание прототипа СПА - создание прототипа СПА - создание прототипа СПА - Реальный объект - Раннее Выявление неисправностей

Модель объекта (статическая)

Задачи пилотного проекта:

- разработка эскизного проекта СПА.
- подготовка пилотного образца СПА для выявления скрытых дефектов в оборудовании энергоблоков АЭС.
- построение, верификация и обеспечение возможности работы в режиме реального времени предиктивных моделей.
- проведение опытной эксплуатации пилотного образца СПА.

Статус разработки предиктивных моделей

№ п/п	Оборудование	Количество моделей
1	Циркуляционные насосы	13
2	Питательные электронасосы	15
3	Главные циркуляционные насосы	12
4	Паровая турбина	16
5	Турбогенератор	11

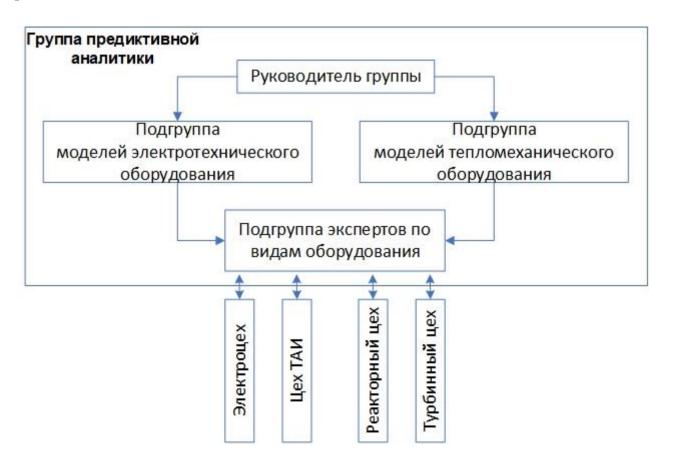
Взаимодействие НВАЭС и ВНИИАЭС

Создание

работы СПА на базе АЭС.

АЭС **ВНИИАЭС** Регулярный мониторинг и анализ результатов работы ПМ: Учет компетенций и опыта АЭС при создании и ежедневный мониторинг и анализ результатов верификации предиктивных моделей (далее работы ПМ силами ВНИИАЭС; ПМ): составление регулярного (сейчас – ежемесячно) результаты разработки и верификации каждой ПМ сводного отчета о результатах работы СПА силами должны быть согласованы АЭС; ВНИИАЭС и направление его на рассмотрение на АЭС: инициирование АЭС процессов разработки ПМ для интересующих персонал единиц оборудования. регулярное (сейчас – ежемесячное) обсуждение результатов работы СПА между АЭС и ВНИИАЭС. Целевая организационная схема взаимодействия ВНИИАЭС и АЭС:

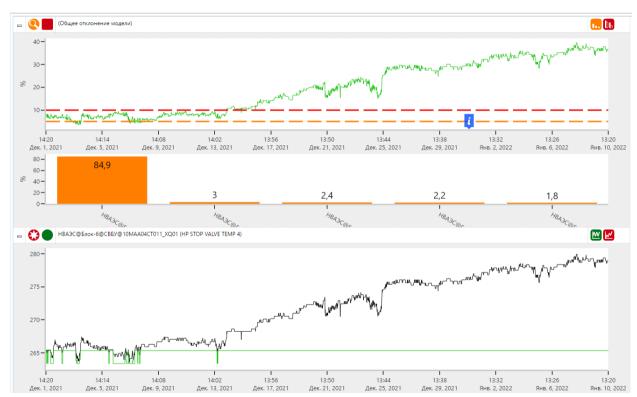
единого центра мониторинга


Создание локальной группы для анализа результатов

результатов работы СПА на базе ВНИИАЭС;

анализа

Группа предиктивной аналитики на НВАЭС


Порядок взаимодействия АЭС и ВНИИАЭС

- специалисты АО «ВНИИАЭС» осуществляют сопровождение и эксплуатацию пилотного образца СПА в части создания ПМ, мониторинга сигнализаций по отклонениям состояния оборудования энергоблока АЭС от ПМ и определения причин данных отклонений;
- специалисты АО «ВНИИАЭС» подготавливают ежемесячный сводный отчет с результатами работы СПА;
- отклонения, причиной которых являются дефекты технологического оборудования верифицируются рабочей группой (ЭЦ, ОТД, ЦТАИ, ТЦ);
- верифицированные результаты подтверждаются мероприятиями на энергоблоке в период ремонта.
- НВАЭС согласовывает записи с результатами анализа выявленных отклонений, получивших статус «отклонения в работе технологического оборудования» или «отклонения в работе КИП, размещенных на технологическом оборудовании» и ежемесячный отчет с результатами функционирования СПА;
- подтвержденные случаи заносятся специалистами АО «ВНИИАЭС» в базу дефектов и на основе них в дальнейшем разрабатываются диагностические правила;

Рост температуры металла корпуса СКВД-4

Линейный рост температуры металла корпуса стопорного клапана высокого давления № 4 в течении длительного времени.

Дата — 15.12.2021г.

Возможная причина появления дефекта:

электрохимическая коррозия контактов термометра сопротивления или выход его из строя

Мнение АЭС по данному событию: подтверждено, благодаря применению СПА удалось заблаговременно получить информацию об отклонениях в работе КИП

Параметр 10MAA04CT011_XQ01 – линейный рост температуры в течении длительного промежутка времени (месяц).

Колебательные изменения вибропараметров обмотки статора

Колебательные изменения вибропараметров обмотки статора — виброконтроль состояния выводов и торцевого крепления обмотки статора со стороны турбины.

Дата — 04.10.2021.

Возможная причина появления дефекта:

снижение уровня жесткости креплений обмотки статора.

Мнение АЭС по данному событию:

событие реальное, удалось заблаговременно получить информацию об изменениях в вибрационном состоянии статора ТГ.

Изменение вибрационного состояния подшипника ЦН-1

Параметр 10PAC01CY008, 10PAC01CY010 - синхронные скачки значений виброскорости верхнего и нижнего подшипника насоса ЦН-1. Максимальный скачок виброскорости - 28.09.2021г. с 1.6 мм/сек до 2.1 мм/сек продолжительностью 2,5 часа.

Периодическое повышение значений виброскорости подшипников электродвигателя и насоса ЦН-1 (временные метки пиков совпадают с провалами уровня воды за ВВС менее 11,7 м).

Дата — 04.09.2021г.

Возможная причина появления дефекта: отклонение угла разворота лопаток предротационного устройства исходного положения. приводящие снижению давления на всасе и напоре, вибрации сопровождающееся скачками подшипников.

Мнение АЭС по данному событию:

подтверждено, что скачки вибропораметров связаны с изменением положения лопаток предротационнго устройства;

Основные результаты пилотного проекта

- 1. Создан пилотный образец СПА
- 2. Созданы и опробованы различные предиктивные модели оборудования
- 3. Организован процесс верификации разработанных ПМ на исторических данных.
- 4. Пилотный образец СПА запущен в промышленную эксплуатацию.
- 5. Подтверждена практическая польза использования СПА в качестве дополнительной контролирующей системы с более расширенным функционалом.
- 6. Требуется длительный период наработки СПА для отстройки предиктивных моделей, что не всегда возможно (необходимость переобучения моделей после каждых ремонтно-восстановительных работ оборудования).

Проблемные вопросы по внедрению СПА

- Ипортозависимое программное обеспечение (PRiSM, Франция);
- Не привычная идеология работы СПА (существование аномальных ситуаций с точки зрения СПА при непревышении уставок);
- Непроработанная схема доведения результатов работы СПА до оперативного персонала;
- В СПА не учитываются зафиксированные дефекты измерительных каналов.

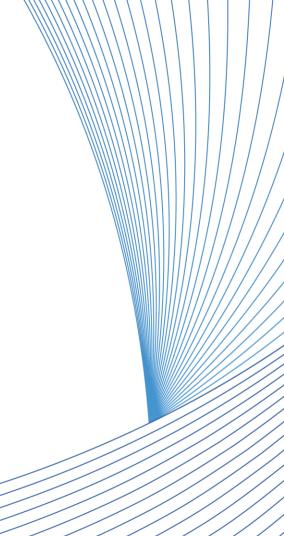
Результаты промышленной эксплуатации пилотного образца системы предиктивной аналитики состояния оборудования АЭС

№ п/п	Дата создания записи	Анализируемое оборудование/система	Характеристика модели	Первопричина срабатывания сигнализации СПА	Результаты анализа записи
1	2023.01.31	Контур основной охлаждающей воды	Модель качества очистки охлаждающей воды	Отказ ИК 10PAA01CL002_XQ01. Потеря сигнала, отсутствие сигнала	Первичная сигнализация (по качеству данных). ИК 10PAA01CL002_XQ01 Дефект. Срок устранения в ППР 2023 (При наличии ЗИП)
2	2023.01.31	Контур основной охлаждающей воды	Модель качества очистки охлаждающей воды	Отказ ИК 10PAA02CL001_XQ01. Потеря сигнала, отсутствие сигнала	Первичная сигнализация (по качеству данных). ИК 10PAA02CL001_XQ01 Дефект. Срок устранения в ППР 2023 (При наличии ЗИП)
3	2023.01.31	Контур основной охлаждающей воды	Модель качества очистки охлаждающей воды	Отказ ИК 10PAA01CL003_XQ01. Потеря сигнала, отсутствие сигнала	Первичная сигнализация (по качеству данных). ИК 10PAA01CL003_XQ01 Дефект. Срок устранения в ППР 2023 (При наличии ЗИП)
4	2023.01.31	Контур основной охлаждающей воды	Процессная модель циркуляции охлаждающей воды	10PAB20CF001_XQ01.	Первичная сигнализация (по качеству данных). ИК 10PAB20CF001_XQ01 Нестабильные показания в следствии из-за условий технологической среды установки датчика.

Результаты промышленной эксплуатации пилотного образца системы предиктивной аналитики состояния оборудования АЭС

Nº п/п	Дата создания записи	Анализируемое оборудование/система	Характеристика модели	Первопричина срабатывания сигнализации СПА	Результаты анализа записи
5	2023.02.01	охлаждающей воды	Процессная модель циркуляции охлаждающей воды	10PAB10CF001_XQ01.	Первичная сигнализация. ИК 10PAB10CF001_XQ01 Нестабильные показания в следствии из-за условий технологической среды установки датчика.
6	2023.02.01	охлаждающей воды	Процессная модель циркуляции охлаждающей воды	Неисправность ИК 10PAB30CF001_XQ01. Колебание параметра	Первичная сигнализация. ИК 10PAB30CF001_XQ01 Нестабильные показания в следствии из-за условий технологической среды установки датчика.
7	2023.02.01	охлаждающей воды	Процессная модель циркуляции охлаждающей воды	Неисправность ИК 10PAB40CF001_XQ01. Колебание параметра	Первичная сигнализация. ИК 10PAB40CF001_XQ01 Нестабильные показания в следствии из-за условий технологической среды установки датчика
8	2023.02.08	охлаждающей воды	Тепловая модель контура основной охлаждающей воды	Отказ ИК 10РАС03СТ009_XQ01. Потеря сигнала, отсутствие сигнала	Первичная сигнализация (по качеству данных). Дефект ЦТАИ, отписан в ЭЦ. Датчик внутрикорпусной, замена возможна только при вскрытии оборудования

Спасибо за внимание


Воронов Алексей Викторович

Инженер 2 категории ОТД НВАЭС Тел.: +7 (47364) 775 52

Моб. тел.: +7 (951) 559 42 76

E-mail: voronovav@nvnpp1.rosenergoatom.ru

www.rosatom.ru 28.04.2023

