

Изотопы на АЭС и для АЭС, настоящее и будущее

Научно-техническая молодёжная конференция «Будущее - атомная энергетика»

Токтосинов Мансур Янгиваевич

Руководитель направления по мониторингу конкурентной среды

17.05.2023

Изотопы

Изотопы - разновидности атомов (и ядер) химического элемента, имеющие **одинаковый атомный номер**, но разные массовые числа.

Примеры изотопов водорода

Основные направления применения изотопов

Медицина

□ РФП

- ✓ Tc-99m, Tl-201, I-123, F-18, Ga-68, I-131, Sm-153, Sr-89, Re-188, Lu-177, Ra-223, Ac-225 u ∂p.
- □ Источники для гамматерапии
 - ✓ Co-60 HSA, Ir-192, Cs-137
- □ Микроисточники (сиды, офтальмоаппликаторы)✓ *I-125*, *Ru-106*, *Sr-90*
- РИА наборы, тесты✓ *I-125, C-13 u m.д.*

Промышленность

□ Источники

- ✓ Для запуска реакторов Cf-252, Pu-238
- ✓ Для сканирования топливных стержней – Cf-252
- ✓ Для промышленной гаммадефектоскопии - Ir-192, Se-75
- √ Для измерительных приборов, и др. Cs-137, Am-241, Cf-252, Kr-85, Sr-90 и др.
- ✓ Для калибровки Na-22, Ti-44, Mn-54, Fe-55 и др.

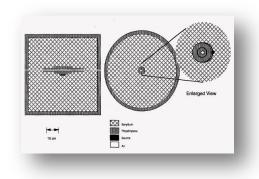
□ Добавки и присадки

- ✓ Для АЭС Zn-64, B-10, Li-7
- ✓ Для микроэлектроники Ge-72, B-11, и др.
- ✓ Др. He-3,, H-3 и др.

□ Топливо

✓ U-235, N-15 (потенциально)

Наука

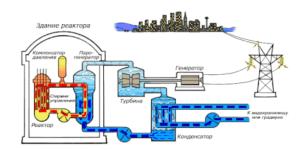


- □ Элементы/материалы и изучение их свойств √ Co-60, Ca-48, Cm-244, Cm-248, Bk-249 и др.
- Элементы детекторов для безнейтринного двойного бета-распада
 ✓ Ge-76, Mo-100 и др.
- **□** Соединения для исследования ✓ *C-14*, *C-13*, *H-3*

Потребление изотопной продукции на АЭС

Cf-252, Pu-238

• Источники для запуска цепной реакции и сканирования топливных стержней



Ir-192, Se-75 и др.

- Сканирование труб, сварных швов
- Калибровка аппаратуры, измерительных приборов

Zn-64 обедненный, Li-7:

- снижение мощности дозы излучения при плановых ремонтах
- уменьшение накопления радиоактивных отходов в оборудовании
- улучшение коррозионного состояния и увеличение срока службы трубопроводов
- снижение кислотности в реакторах типа PWR и в виде литированной смолы для предотвращения вывода Li-7

В-10 карбид, кислота и др.

- в системах управления и защиты (СУЗ) в реакторах;
- для изготовления специальной стали, используемой в качестве материала для контейнеров для хранения и перевозки радиоактивных веществ

Технологии производства изотопов

Изотопы

Стабильные

электромагнитные технологии

методы химического изотопного обмена

□ газовые центрифуги

□ лазерные технологии

Радиоактивные

реакторы

циклотроны и ускорители

энергетические реакторы

🗖 генераторы

Регулярная наработка изотопов на 46 реакторах (до 10% мирового реакторного парка)

- Более 90% видов изотопной продукции нарабатывают на исследовательских реакторах
- □ В РФ сосредоточено ~30% мирового реакторного парка, вовлеченного в наработку изотопов в промышленных объемах

- Вовлечены в производство ключевых изотопов.
 - ✓ Co-60, Mo-99, I-131, I-125,Lu-177 (потенциально)

Реакторный парк для наработки изотопов в РФ

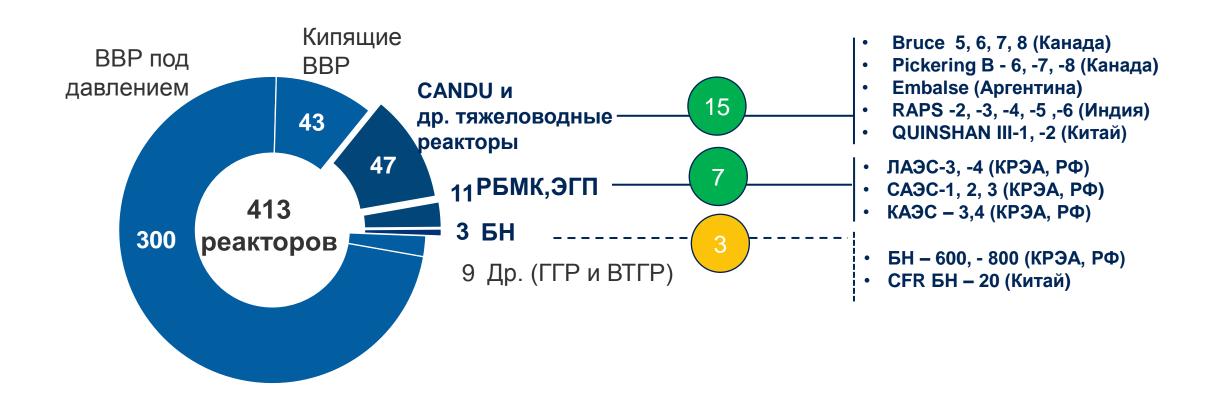
ЭР

На регулярной основе – 14 реакторов

	Cf 252 Co 75 Co 60 LIDD In 402 W 409	
CM-3	Cf-252, Se-75, Co-60 HDR, Ir-192, W-188,	
	Sr-89, Ni-63, Gd-153, I-125	
РБТ-10/2	Mo-99, I-131	
РБТ-6	Mo-99, I-131	
ВВР-Ц	Mo-99, I-131, Sm-153	
ИВВ-2М	Lu-177, Cs-131, Ir-192,C-14, Se-75	
Руслан и	0- 00 0- 00 UDD 0 44 1- 400	
Людмила	Co-60, Co-60 HDR, C-14, Ir-192	
ТПУ*	To 00m Lu 177	
	Tc-99m, Lu-177	

ЛАЭС 3, 4	Co-60, I-131, I-125, Mo-99/Tc-99m
CA9C 1, 2, 3	Co-60
KA9C 3,4	Co-60

Дополнительные возможности – >5 реакторов


МИР	
БОР-60	Потенциально Cf-252, Co-60 и др.
МБИР	
(потенциально) и др.	

БН-600	
БН-800	Потенциально Со-60 и др.
Др.	

^{*}ТПУ – низкопоточный реактор, производит для локального рынка ИПР –исследовательские и промышленные реакторы, ЭР – энергетические реакторы

Мировой парк энергетических реакторов, задействованных в производстве изотопов в мировых масштабах

Актуальные задачи

□ Подтверждение наработки Со-60 на БН с приемлемой себестоимостью
✓ Поиск технических решений для транспортировки
□ Продление сроков эксплуатации РБМК для наработки I-131 и других медицинских изотопов
□ Доработка технологий производства I-125 на реакторах РБМК
□ Разработка технологии производства Lu-177 в соответствии с требованиями покупателей по техническим характеристикам
□ Рассмотрение возможности наработки C-14

